Ученые проверили, может ли нейросеть эффективно определять пористость и строение почвы по изображениям рентгеновской томографии. Часто невозможно оценить эти параметры без вмешательства человека, так как современные методы обработки изображений с участием оператора часто приводят к ошибкам. Предложенный ученными подход позволяет это сделать всего с 5% ошибок и в будущем поможет оценивать структурное состояние почвы, в том числе для нужд сельского хозяйства. Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда, опубликованы в журнале Soil and Tillage Research.

«Добавление в методику обработки изображений почв методов физического моделирования позволяет создать универсальный подход. В нашей работе мы показали, что таким образом можно полностью исключить влияние оператора. Исследования в этой области необходимы для возможности создания цифровой модели почвенного строения», — поясняет Кирилл Герке, кандидат физико-математических наук, ведущий научный сотрудник лаборатории фундаментальных проблем нефтегазовой геофизики и геофизического мониторинга Институт физики Земли имени О.Ю. Шмидта РАН (Москва).

Почве принадлежит основополагающая роль в среде обитания человека. Ее изучение важно: она — основа производства любой сельскохозяйственной продукции. Поровое пространство почвы выполняет полезные функции: проведение воды и воздуха, удерживание разных химических соединений (иногда опасных для человека), а также обеспечение плодородия почвы и ее целостности. Знания о структуре и свойствах почв необходимы также для проектирования различных хозяйственных построек: зданий, дорог и других объектов инфраструктуры. Во всех этих случаях нужно оценивать строение почвы: количество и размеры пор, связность порового пространства на разных уровнях структурной организации, наличие каналов передвижения воды и растворенных в ней веществ.

Схема архитектуры нейронной сети ResNet-101 + U...

Схема архитектуры нейронной сети ResNet-101 + U-net для анализа РКТ-изображений почвы. Источник: Lavrukhin et al. / Soil and Tillage Research, 2021

Для изучения морфологии почвы можно использовать метод рентгеновской компьютерной томографии (РКТ), который позволяет получать наглядные трехмерные изображения внутренней структуры неповреждающим методом. Чтобы определить пути передвижения жидкостей и размеры пор, томографические изображения нужно обработать: разделить их на рентген-контрастные фазы по градациям серого, то есть сегментировать. При сегментации РКТ-изображения на две фазы оно становится бинарным (однобитным), где поры становятся черными, а все что им не соответствует и условно относится к твердой фазе — белым. От того, насколько хорошо сегментировано изображение, зависит характеристика параметров образца.

«При оценке свойств почвы по РКТ-изображениям используют 2D или 3D анализ изображений на основе сегментации. До недавнего времени сегментация чаще всего делалась вручную и зависела от восприятия каждого человека, что неэффективно и создает множество проблем, когда требуется сравнить сразу много различных образцов друг с другом, — комментирует Кирилл Герке. — Современные методы сегментации РКТ-изображений используют нейронные сети, то есть их можно обучить на данных из общедоступных библиотек изображений, что будет улучшать качество сегментации и со временем сведет к минимуму человеческий фактор. Но на этапе обучения нейросеть все равно требуют вмешательства человека».

В своей работе ученые из Института физики Земли имени О.Ю. Шмидта, МГУ имени М.В. Ломоносова и Почвенного института имени В.В. Докучаева предложили алгоритмы для оценивания свойств почвы с большой точностью без участия человека. Для этого они использовали гибридную архитектуру нейронной сети ResNet-101 + U-net. Первая модель нужна для извлечения из исходного изображения важных признаков, а вторая — для сегментации исходного изображения на их основе.

Пример обработки изображений: оригинальное трех...

Пример обработки изображений: оригинальное трехмерное изображение почвы (рентгеновская томография) и сегментированное с помощью нейронной сети. Источник: Lavrukhin et al. / Soil and Tillage Research, 2021

Разработанная система моделирует поры и их твердые стенки, подстраивая параметры моделей под тренировочную выборку из размеченных изображений. С ее помощью ученые успешно обработали семь РКТ-изображений почвы. Погрешность оценивали двумя способами: моделированием потоков жидкостей (флюидов) в порах и на основе классических показателей компьютерного зрения. Для некоторых образцов из набора погрешность составила всего 5%. Такой результат говорит о том, что разработанная нейронная сеть работает точнее, чем все современные автоматические аналоги. Тем не менее, у некоторых образцов погрешность была существенно выше 5%. Ученые полагают, что это можно объяснить недостаточностью некоторых структур образцов грунта в наборе обучающих данных, поэтому в будущей работе они планируют использовать более крупные библиотеки РКТ-изображений почвы.