В современном научном мире большое значение имеет грамотно выбранная эмпирическая модель исследования. Изучение молекулярно-клеточных механизмов нервной системы представляет большую актуальность, но омрачено дороговизной модельных объектов и слабой возможности переноса полученных результатов на человеческий организм. Научным коллективом лаборатории «Молекулярная нейробиология» Академии биологии и биотехнологии им. Д.И. Ивановского была поставлена задача найти и разработать удобную экспериментальную модель изучения сигнальных механизмов выживания и гибели нейронов и глиальных клеток (проводники нервных импульсов) в условиях различных стрессовых воздействий. «Золотым ключом» решения проблемы стал обыкновенный речной рак.

«На периферии брюшка рака расположен рецептор растяжения, состоящий из двух механорецепторных нейронов, окруженных глиальными клетками, а также пары рецепторных мышц. Не нужно готовить сложные смеси для выращивания культуры клеток, достаточно поместить нейроны в простой физиологический раствор для хладнокровных животных, который можно приготовить в любой биохимической лаборатории в течение пяти минут. Так, введя микроэлектроды в клетки и подключив их к специальному оборудованию, можно услышать биение «невидимых сердец» механорецепторных нейронов речных раков — биоэлектрическую импульсную активность. Добавляя в раствор с нейронами активаторы и ингибиторы различных сигнальных белков, можно буквально за несколько часов оценить их нейропротекторный либо нейротоксический эффект в таких шок-ситуациях для клетки, как, например, полный разрыв аксона (отросток нейрона, передающий биоэлектрические сигналы), либо фотодинамическое воздействие. Разработанная модель позволяет выявить внутриклеточные процессы, регулирующие выживание и различные формы гибели нервных клеток — апоптоз или некроз при окислительном повреждении, что очень важно для лечения многих патологий, таких как, например, инсульт, онкология, травма нервов», — рассказал Станислав Родькин, младший научный сотрудник Лаборатории «Молекулярная нейробиология».

По словам ученого, оба воздействия являются прямым отражением важнейших проблем здравоохранения. Первое — полный разрыв аксона часто сопровождает травмы нервов, второе — фотодинамическая терапия (метод повреждения патологически измененной ткани, протекающий при взаимодействии света, кислорода и фотосенсибилизатора) используется для лечения онкологии, в частности опухолей мозга.

«В первом случае нужно сохранить поврежденные нейроны для их регенерации, во втором — здоровые, окружающие опухоль. Но как это сделать, когда не знаешь, как работает сложная клеточная машина в условиях стресса? Механорецепторные нейроны — вот ответ. Это идеальная модель для изучения электрофизиологии, морфологии и биохимии. Мы окрасили нейроны и глиальные клетки недорогими красителями — пропидиумом йодида и Hoechst-33342 и увидели «флуоресценцию жизни либо смерти». Пропидиум йодид визуализирует некротические, то есть мертвые, клетки, а Hoechst-33342 — живые», — рассказал Станислав Родькин.

Так, можно оценивать влияние различных веществ на выживание нейронов и глиальных клеток в условиях шок-реакций на доступной и, главное, эффективной модели с помощью речного рака. Это расширяет понимание о фундаментальных механизмах клеточной адаптации к стресс-воздействиям, а также вносит существенный вклад в разработку методов защиты нейронов. Результаты проекта опубликованы в журналах Journal of Photochemistry and Photobiology и Journal of Molecular Neuroscience.